Office of Satellite and Product Operations Environmental Satellite and Product Services

VIIRS Surface Reflectance (SR) External Users Manual (EUM)

Version 1.1 November 02, 2023

Prepared by: ERT Inc.

U.S. Department of Commerce National Oceanic and Atmospheric Administration National Environmental Satellite, Data, and Information Service Office of Satellite Products and Operations

Approval Page

Environmental Satellite and Products Services

The Regional Advanced Baseline Imager and Visible **Infrared Imaging Radiometer Suite Emissions (RAVE)**

GROUP: ESPC	Date	GROUP: OMS	Date
Hanjun Ding (OSPO), SR Product	Area Lead	Nageswarrao Gopanapall	i, Project Manager
GROUP:	Date		

Changes/Revisions Record

This document is changed as required to reflect system, operational, or organizational changes. Modifications made to this document are recorded in the Changes/Revisions Record below. This record will be maintained throughout the life of the document.

DOCUMENT TITLE: VIIRS Surface Reflectance External User's Manual							
DOCUMENT CHANGE HISTORY							
Revision No. Date Revision Originator Project Group Approva							
July 2023	CCAP initial version	N/A					
11/02/2023	NCCF Implement Updates	NCCFPVPM-5					
	Date July 2023	Date Revision Originator Project Group July 2023 CCAP initial version					

LIST OF CHANGES

Significant alterations made to this document are annotated in the List of Changes table.

DOCUMENT TITLE: VIIRS Surface Reflectance External User's Manual							
	LIST OF CHANGE-AFFECTED PAGES/SECTIONS/APPENDICES						
Version Number	113ta Yana Saction Hascrintion of Chandais)						
1.1	11/02/2023	H. Ding Y. Zhu		ALL	NCCF Implementation updates		

TABLE OF CONTENTS

		<u>Page</u>
LIST OF TABLE	S AND FIGURES	6
1. PRODUCTS	3	7
1.1 Product	t Overview	7
1.1.1 Pro	oduct Requirements	7
1.1.2 Pro	oduct Description	9
1.1.3 Pro	oduct History	10
1.1.4 Pro	oduct Access	10
2. ALGORITHI	M	17
2.1 Algorith	ım Overview	17
2.2 Input Sa	atellite Data	18
2.2.1 Sa	tellite Instrument Overview	18
2.2.2 Sa	tellite Data Preprocessing Overview	19
2.2.3 Inp	out Satellite Data Description	19
2.3 Input A	ncillary Data	21
3. PERFORMA	ANCE	23
3.1 Product	t Testing	23
3.1.1 Te	st Data Description	23
3.1.2 Un	it Test Plans	23
3.2 Product	t Accuracy	24
3.2.1 Tes	st Results	24
3.2.2 Pro	oduct Accuracy	24
3.3 Product	t Quality Output	24
3.4 Externa	al Product Tools	30
4. PRODUCT	STATUS	31
4.1 Operati	ons Documentation	31
4.2 Mainter	nance History	31

LIST OF TABLES AND FIGURES

	<u>Page</u>
Table 1-1 - Product Team Members	7
Table 1-2 – VIIRS Surface Reflectance Output File	10
Table 1-3 – VIIRS EDR File Content Description	
Table 1-4 - Surface Reflectance Metadata	12
Table 2-1 - Satellite Data Input Files	19
Table 2-3 – Static Ancillary Data Files	22
Table 3-1 – Summary of VIIRS Surface Reflectance Product Performance	
Table 3-2 - QF1 Surface Reflectance	25
Table 3-3 - QF2 Surface Reflectance	25
Table 3-4 - QF3 Surface Reflectance	26
Table 3-5 - QF4 Surface Reflectance	26
Table 3-6 - QF5 Surface Reflectance	27
Table 3-7 - QF6 Surface Reflectance	28
Table 3-8 - QF7 Surface Reflectance	28

1. PRODUCTS

This is an external user's manual document describing the Visible Infrared Imaging Radiometer Suite (VIIRS) algorithm for Surface Reflectance. The VIIRS Surface Reflectance algorithm was developed at Goddard Space Flight Center (GSFC) as part of the original National Polar-orbiting Operational Environmental Satellite System (NPOESS) – now Suomi National Polar-orbiting Partnership (NPP) - Interface Data Processing Segment (IDPS). This algorithm has been modified for the NCCF (NESDIS Common Cloud Framework) environment through assistance from the OSGS (Office of Satellite Ground Services). After preliminary testing, the algorithm will be delivered to the Office of Systems Development (OSD) to be run operationally.

The intended users of the External User's Manual (EUM) are end users of the output products and the product verification and validation (V&V) teams. The purpose of the EUM is to provide product users and product testers with information that will enable them to acquire the product, understand its features, and use the data. External users are defined as those users who do not have direct access to the processing system, i.e. are outside of OSD. The output files are defined as those for public use.

1.1 Product Overview

1.1.1 Product Requirements

All of the VIIRS Surface Reflectance requirements are available through the VIIRS Surface Reflectance Requirements Allocation Document (RAD). These requirements identify the users and their needs with respect to file content, format, latency, and quality. This document is available upon request from the Surface Reflectance Product Area Lead (PAL), current as of this document in the table below.

Table 1-1 - Product Team Members

Team Member	Organization	Role	Contact Information
Hanjun Ding	OSPO	PAL (Product Area Lead)	hanjun.ding@noaa.gov
Walter Wolf	osgs	Product Portfolio Management Lead	walter.wolf@noaa.gov
Shanna Sampson	osgs	ASSISTT Solutions Architect	shanna.sampson@noaa.gov

Priyanka Roy	osgs	Quality Assurance Lead, Deputy Project Manager	Priyanka.roy@noaa.gov	
Tracey Dorian	OSGS	QA Deputy	tracey.dorian@noaa.gov	
Edrees Wardak	osgs	ASSISTT Quality Assurance	edrees.wardak@noaa.gov	
Yunhui Zhao	osgs	ASSISTT CM Lead & Special Projects	yunhui.zhao@noaa.gov	
Yunyue Yu	STAR	Science Team	yunyue.yu@noaa.gov	
Heshun Wang	STAR	Science Team	heshun.wang@noaa.gov	
Eric Vermote	NASA	Science Team	eric.f.vermote@nasa.gov	
Mike Wilson	osgs	ASSISTT GitLab Merge Lead	michael.wilson@noaa.gov	
Douglas March	osgs	ASSISTT Integration Team	douglas.march@noaa.gov	
Letitia Soulliard	OSGS	ASSISTT Standalone Integration Team Lead	letitia.soulliard@noaa.gov	
Hua Xie	OSGS	ASSISTT Science QA Lead	hua.xie@noaa.gov	
John Lindeman	OSGS	ASSISTT Technical Writer	john.lindeman@noaa.gov	
Brandon Laufer	OSGS	Python Developer	brandon.laufer@noaa.gov	
Eric Buzan	osgs	ASSISTT R20 & Processing	eric.buzan@noaa.gov	
Ramaswamy Tiruchirapalli	OSGS	ASSISTT Framework Integration Team	Ramaswamy.Tiruchirapalli@noaa. gov	
Edward Borders	OSGS	ASSISTT Python Developer Team Lead	Edward.borders@noaa.gov	
Yufeng Zhu	OSPO	OSPO Team Member	Yufeng.zhu@noaa.gov	

Feedback, comments, criticisms, and/or suggestions are welcome and should be sent to:

Name	Email
Hanjun Ding	Hanjun.ding@noaa.gov
Ramaswamy Tiruchirapalli	ramaswamy.tiruchirapalli@noaa.gov
Brandon Laufer	brandon.laufer@noaa.gov
Eric Buzan	eric.buzan@noaa.gov
Ed Borders	edward.borders@noaa.gov
Tracey Dorian	tracey.dorian@noaa.gov
Eddy Wardak	edrees.wardak@noaa.gov
Priyanka Roy	priyanka.roy@noaa.gov

1.1.2 Product Description

The VIIRS Surface Reflectance product is generated from a combination of the VIIRS SDR and geolocations data, and Global Forecast System (GFS), aerosol, cloud mask, and cloud height products. The output products include surface reflectance for channels I1, I2, I3, M1, M2, M3, M4, M5, M7, M8, M10, and M11. Output additionally includes seven bytes of quality flags (QF1, QF2, QF3, QF4, QF5, QF6, QF7), which are each bitmasks representing various properties of both inputs and outputs. Statistical quality information is also included in the output file. All products are output in netCDF-4. For information on the science algorithms, see the VIIRS Surface Reflectance Algorithm Theoretical Basic Document (ATBD). This document can be obtained from the Product Area Lead (PAL) identified in the Product Team table in section 1.1.1.

The Surface Reflectance NetCDF4 product files will contain surface reflectance data for each M-band and I-band used as input to the algorithm package. For the M-bands, the resolution will be 750 meters. For the I-bands, the resolution will be375 meters. The amount of data within the I-Band product files will be roughly four times larger than the amount of data within the M-Band product files as the I-Bands have a higher swath resolution.

1.1.3 Product History

The VIIRS Surface Reflectance product originally existed as a product in the IDPS. The original system used the VIIRS SDR and geolocation, VIIRS Cloud Mask, Aerosol Optical Depth Product, and internal NCEP files for surface pressure, precipitable water, and total column ozone. All of these inputs were available internally in the IDPS system. The output was generated in HDF-EOS2 format. This delivery is a final CCAP delivery to NCCF, and is the first version of the algorithm to be run at NCCF.

1.1.4 Product Access

Table 1-2 lists the single output file from the VIIRS Surface Reflectance algorithm, along with a description and approximate size. Table 1-3 details the contents of the output file.

Table 1-2 - VIIRS Surface Reflectance Output File

File	Description	Format	Size/file
SurfRefl_v#r#_ <sat></sat>	The SR (Surface Reflectance) file	NetCDF-4	~209 MB/file
_sYYYYMMDDhhmm	contains surface reflectances for I-		288 files/day
sss_eYYYYMMDDhh	bands 1,2,3 and for M-bands		-
mmsss_cYYYYMMD	1,2,3,4,5,7,8,10,11. This file also		
Dhhmmsss.nc	includes five bitmapped quality flags.		

Where:

SurfRefl – Surface Reflectance Products
v#r# – version number, revision number (eg. v1r2)
<SAT> - the type of satellite used (eg. j01, n21, npp)
YYYY – 4-digit Year
MM – 2-digit Month
DD – 2-digit Day of Month
hh – 2-digit Hour
mm – 2-digit Minute
sss – 3-digit Second (3rd digit 10ths of a second)

Table 1-3 – VIIRS EDR File Content Description

Variable	Type	Description	Dim	Units	Range
----------	------	-------------	-----	-------	-------

375m Surface Reflectance Band I1	Short	Surface Reflectance for I1 Band, stored as value * 10000.	1536 x 6400	N/A	-0.01-1.6
375m Surface Reflectance Band I2	Short	Surface Reflectance for I2 Band, stored as value * 10000.	1536 x 6400	N/A	-0.01-1.6
375m Surface Reflectance Band I3	Short	Surface Reflectance for I3 Band, stored as value * 10000.	1536 x 6400	N/A	-0.01-1.6
750m Surface Reflectance Band M1	Short	Surface Reflectance for M1 Band, stored as value * 10000.	768 x 3200	N/A	-0.01-1.6
750m Surface Reflectance Band M2	Short	Surface Reflectance for M2 Band, stored as value * 10000.	768 x 3200	N/A	-0.01-1.6
750m Surface Reflectance Band M3	Short	Surface Reflectance for M3 Band, stored as value * 10000.	768 x 3200	N/A	-0.01-1.6
750m Surface Reflectance Band M4	Short	Surface Reflectance for M4 Band, stored as value * 10000.	768 x 3200	N/A	-0.01-1.6
750m Surface Reflectance Band M5	Short	Surface Reflectance for M5 Band, stored as value * 10000.	768 x 3200	N/A	-0.01-1.6
750m Surface Reflectance Band M7	Short	Surface Reflectance for M7 Band, stored as value * 10000.	768 x 3200	N/A	-0.01-1.6
750m Surface Reflectance Band M8	Short	Surface Reflectance for M8 Band, stored as value * 10000.	768 x 3200	N/A	-0.01-1.6
750m Surface Reflectance Band M10	Short	Surface Reflectance for M10 Band, stored as value * 10000.	768 x 3200	N/A	-0.01-1.6
750m Surface Reflectance Band M11	Short	Surface Reflectance for M11 Band, stored as value * 10000.	768 x 3200	N/A	-0.01-1.6
Latitude_at_375m _resolution	Float	Latitude at 375 meter resolution to match up with the I-Band Surface Reflectances	1536 x 6400	Degrees	-90-90
Longitude_at_375m _resolution	Float	Longitude at 375 meter resolution to match up with the I-Band Surface Reflectances	1536 x 6400	Degrees	-180-180

Latitude_at_750m _resolution	Float	Latitude at 750 meter resolution to match up with the M-Band Surface Reflectances	768 x 3200	Degrees	-90-90
Longitude_at_750m _resolution	Float	Longitude at 750 meter resolution to match up with the M-Band Surface Reflectances	768 x 3200	Degrees	-180-180
QF1 Surface Reflectance	Byte	Bitmasks for Surface Reflectance – see Table 3-2	768 x 3200	N/A	0-255
QF2 Surface Reflectance	Byte	Bitmasks for Surface Reflectance – see Table 3-3	768 x 3200	N/A	0-255
QF3 Surface Reflectance	Byte	Bitmasks for Surface Reflectance – see Table 3-4	768 x 3200	N/A	0-255
QF4 Surface Reflectance	Byte	Bitmasks for Surface Reflectance – see Table 3-5	768 x 3200	N/A	0-255
QF5 Surface Reflectance	Byte	Bitmasks for Surface Reflectance – see Table 3-6	768 x 3200	N/A	0-255
QF6 Surface Reflectance	Byte	Bitmasks for Surface Reflectance – see Table 3-7	768 x 3200	N/A	0-255
QF7 Surface Reflectance	Byte	Bitmasks for Surface Reflectance – see Table 3-8	768 x 3200	N/A	0-255
quality_information	String	QI Statistics – see section 3.3	N/A	N/A	N/A

Quality Flag information for the QF1-QF7 Surface Reflectance variables can be found in Table 3-2 to Table 3-8. Details about the quality_information variable can be found in section 3.3.

Metadata included with each output file is shown in Table 1-4.

Table 1-4 - Surface Reflectance Metadata

Attribute	Description	Type	Array Size
AncillaryInputPointer	Names of the	String	1
	ancillary input files		

Conventions	Conventions used	String	1
1 15 : 1	here		
InputPointer	Names of the input files	String	1
PGE_Name	Name of the PGE	String	Scalar
_NCProperties	NetCDF and HDF	String	Scalar
	version numbers,		
	will be		
	automatically		
	generated		
ascend_descend_data_flag	Flag indicate	Integer	Scalar
	whether satellite		
	ascending or		
	descending		
cdm_data_type	States the	String	Scalar
	geographic		
	category the		
. •1	product represents	a. ·	G 1
creator_email	Email for the	String	Scalar
	algorithm		
	development team	G. :	0 1
creator_name	Indicates the line	String	Scalar
	office and		
	algorithm team		
	responsible for product		
	development		
creator url	Website for end	String	Scalar
creator_urr	users	String	Scarar
date created	UTC time the	String	Scalar
date_ereated	product file was	String	Scarar
	created in 4-digit		
	year, 2-digit		
	month, 2-digit day,		
	2-digit hour, 2-		
	digit minute, 2-		
	digit second format		
day night data flag	Indicates whether	String	Scalar
	the output product		
	is in the daytime,		
	nighttime, or both		
end_orbit_number	This attribute is a	String	Scalar
	sequential whole		
	number set by the		

	G MDD/IDGG		
	S-NPP/JPSS		
	Ground System in		
	the xDR metadata.		
geospatial_bounds	Describes the	string	1
	shape and		
	bounding corner		
	locations of the		
	domain		
geospatial_first_scanline_first_fov_lat	The first latitude at	float	scalar
	the first scanline		
geospatial_first_scanline_first_fov_lon	The first longitude	float	scalar
	at the first scanline		
geospatial first scanline last fov lat	The last latitude at	float	scalar
	the first scanline		
geospatial first scanline last fov lon	The last longitude	float	scalar
	at the first scanline		
geospatial_last_scanline_first_fov_lat	The first latitude at	float	scalar
	the last scanline		
geospatial last scanline first fov lon	The first longitude	float	scalar
	at the last scanline		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
geospatial last scanline last fov lat	The last latitude at	float	scalar
georpum_mo_semmo_sec_rec_rec_rec	the last scanline		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
geospatial_last_scanline_last_fov_lon	The last longitude	float	scalar
8	at the last scanline		
geospatial lat units	Indicates unit	String	Scalar
geespunn_ini_mini	associated with		
	geospatial latitude		
geospatial lon units	Indicates unit	String	Scalar
geospanar_ion_annes	associated with	Sumg	Scarar
	geospatial		
	longitude		
history	Indicates algorithm	String	Scalar
motory	name and version		Starar
	responsible for		
	creating the file		
id	Unique identifier	String	Scalar
	for the product	Jung	Scalai
institution	Indicates	String	Scalar
Institution	institution		Source
	responsible for		
	product file		
instrument	Indicates the	String	Scalar
msuument		Sumg	Scalai
	instrument(s) used		

	in the creation of		
	the product		
keywords	Look-up words/phrases associated with this product	String	1
Metadata_Conventions	Conventions used in the creation of the metadata	String	Scalar
metadata_link	Contains a URL where detailed metadata or a product information page is located	String	Scalar
naming_authority	Organization String responsible for providing the "id" attribute		Scalar
ncei_template_version	NCEI template used for processing	String	Scalar
platform	Indicates the satellite(s) used to create the product	String	1
processing_level	Level of processing associated with product file	String	Scalar
production_environment	Processing string responsible for generating the product	String	Scalar
production_site	Processing site for the product	String	Scalar
project	Indicates the name(s) of the project(s) responsible for generating the original data used as input to the processing system	String	Scalar

141.1			T ~ .
publisher_email	Provides an email	String	Scalar
	that can be used to		
	contact the person		
	or entity who is		
	responsible for		
	publishing the		
	output files to the		
	proper end users		
publisher_name	Provides the name	String	Scalar
	of the organization		
	responsible for the		
	product's		
	publication		
publisher url	Provides URL of	String	Scalar
_	publisher's website		
source	Provides a list of	String	Scalar
	all significant input		
	files into the		
	product system as a		
	comma separated		
	list		
standard name vocabulary	Provides the name	String	Scalar
	and corresponding		
	version number of		
	the controlled		
	vocabulary used		
start orbit number	This attribute is a	String	Scalar
	sequential whole	8	
	number set by the		
	S-NPP/JPSS		
	Ground System in		
	the xDR metadata.		
	Orbits are		
	incremented on the		
	northward		
	equatorial node.		
summary	Provides a brief	String	Scalar
Sammer y	summary of the	Sums	Source
	product		
time coverage end	Indicates the end	String	Scalar
mne_coverage_end	time of the	Jung	Scarai
	observation		
	associated with the		
	file in 4-digit year,		

	2-digit month, 2-digit day, 2-digit hour, 2-digit minute, 2-digit second format		
time_coverage_start	Indicates the start time of the observation associated with the file in 4-digit year, 2-digit month, 2-digit day, 2-digit hour, 2-digit minute, 2-digit second format	String	Scalar
title	Provides the short name for the product	String	Scalar

2. ALGORITHM

2.1 Algorithm Overview

The Surface Reflectance EDR (Environmental Data Record) algorithm is designed to contain four main subroutines: Extract inputs, Quality Flags, Surface Reflectance Retrieval and Write Surface Reflectance EDR. The Surface Reflectance Retrieval subroutine is the main subroutine since it performs the lambertian approximation (atmospheric correction), the adjacency adjustment, and the bidirectional reflectance distribution function (BRDF) coupling adjustment.

The Surface Reflectance Retrieval routine corrects for the effects of gaseous absorption, molecular and aerosol scattering, thin cirrus contamination, glare from surrounding surface pixels (adjacency adjustment), and the coupling of the atmosphere and the surface bidirectional reflectance as a function of the viewing and solar geometries, elevation of the target and spectral band. The atmospheric adjustment (within the 'Surface Reflectance Retrieval' routine) includes updating the correction coefficients with 'in-view' total column water vapor, ozone, and aerosol optical thickness data input fields. The aerosol information required for surface reflectance retrieval comes from the VIIRS Aerosol Optical Thickness (AOT) EDR and the Aerosol Model Information IP, complemented by total column water vapor, total column ozone, and surface pressure from National Centers for Environmental Prediction (NCEP) feeds. Backups for these inputs include total column ozone from the Ozone Mapping Profiling Suite (OMPS). The atmospherically corrected surface reflectance

values derived using the Lambertian approximation are subsequently adjusted for adjacency and bi-directional reflectance distribution function (BRDF) effects. The BRDF-coupling adjustment is presently designed after the MODIS approach with a slight modification making the isotropic shape parameter a function of the normalized difference vegetation index, NDVI, an approximation due to operational constraints, and the developmental maturity of the MODIS BRDF-coupling adjustment routine. The surface reflectance values after each adjustment are included as data layers in the surface reflectance EDR along with the Land Quality Flags. The atmospheric inputs are available elsewhere, and the solar and viewing geometries are kept as part of the SDR.

Thin cirrus effects are removed by implementing an empirically based correction using VIIRS band M9 (1.38 μ m). The quality control (QC) flags generated from the Build SDR module and the cloud and aerosol quality flag inputs are fused into a single Land Quality Flag (LQF) structure that applies to the Surface Reflectance EDR, the Surface Albedo EDR, the Vegetation Index EDR, the Surface Type EDR. The LQF output is appended to the Surface Reflectance EDR. Then the heart of the surface reflectance retrieval process begins, by converting the cirrus effects adjusted satellite reflectance values into surface reflectance values assuming the surface is Lambertian. The earth's surface is generally not Lambertian, and as a result a further correction is applied. The conversion of the atsatellite-reflectance values to surface reflectance requires (i) the use of a set of conversion equations that also account for first order atmospheric multiple scattering effects, and (ii) inputs from pre- generated look up tables (LUTs) and analytic equations for gaseous or molecular effect.

2.2 Input Satellite Data

2.2.1 Satellite Instrument Overview

The VIIRS instrument is a scanning radiometer aboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite, on Joint Polar Satellite System -1 and -2 (JPSS-1/N20/J01 and JPSS-2/N21/J02), and planned for inclusion on future JPSS missions. VIIRS is a scanning radiometer that gathers radiances spanning from visible wavelengths through longwave infrared wavelengths. Radiances and/or reflectances are reported as Sensor Data Records (SDRs) through five imagery bands at 375-meter resolution, sixteen moderate resolution bands at 750-meter resolution, and one day-night band for low light at 750-meter resolution. Data is reported in granules containing approximately 85 seconds worth of retrievals. This is the equivalent of aerial coverage of approximately 3040 km by 570 km per granule. VIIRS also produces geolocation files for both the I-bands and M-bands for ellipsoid or terrain projections as well as Environmental Data Records (EDRs) that remap and reproject the data.

The S-NPP satellite was launched on October 28, 2011 and establishes a bridge between NASA's Earth Observing System (EOS) satellites and the current line of JPSS satellites. The S-NPP satellite contains VIIRS as well as four other instruments measuring the

ultraviolet, visible, infrared, and microwave spectra. S-NPP exists in a sun-synchronous orbit with an ascending node equator crossing time of approximately 1330 UTC. JPSS-1 was launched on November 18, 2017 and follows the same orbit path as S-NPP but is 50 minutes separated from S-NPP. During this time, the earth rotates underneath the orbit, which results in the geolocated center of each swath falling in the gaps left by the other satellite thereby improving coverage. JPSS-2 was launched on November 10, 2022, and follows a similar trajectory as the other two satellites.

2.2.2 Satellite Data Preprocessing Overview

The raw VIIRS data is dumped every orbit (~101 minutes) at Svalbard, Norway. These raw data records (RDRs) are recalibrated and geolocated into VIIRS SDR (and EDR) data in the IDPS system. The VIIRS SDR data is then ported from the IDPS to the AWS (Amazon Web Services) system for use by the Surface Reflectance algorithm.

The Enterprise Cloud Mask, the Cloud Height product, and the Aerosol Optical Thickness product are all derived from the VIIRS instrument data. The GFS fields are NUP (NOAA Unique Product) files which provide numerical model data.

The Surface Reflectance algorithm will create swath data that matches the input VIIRS SDR data. Distribution of the final product will occur via the Product Distribution Area (PDA) in near-real time. More details about the processing sequence can be found within the VIIRS Surface Reflectance System Maintenance Manual (SMM), available from the Surface Reflectance PAL.

2.2.3 Input Satellite Data Description

The VIIRS instrument is the sole instrument providing data for processing. The VIIRS Surface Reflectance algorithm requires the VIIRS SDR for each band where surface reflectance is calculated (M1-M5, M7, M8, M10, M11, I1-3), the geolocation for the moderate and imagery bands (GMTCO/GITCO). Table 2-1 lists the naming convention and examples of the VIIRS satellite data input files.

Table 2-1 - Satellite Data Input Files

PDA ShortName and	Description	Product FileName
Item		

VIIRS-I[1-3]-SDR	Sensor Data	SVI0[1-
VIIRS Imagery Band	Records	3]_ <sat>_d<date>_t<time>_e<time>_b<</time></time></date></sat>
SDR		ORBIT>_c <date time="">_naoc_ops.h5</date>

Example:

SVI01_j01_d20200817_t2317203_e2318448_b14239_c20200817233309432386_no ac_ops.h5

VIIRS-M[1-5/7-8/10-	Sensor Data	SVM[01-05/07-08/10-
11 <i>]</i> -SDR	Records	11]_ <sat>_d<date>_t<time>_e<time>_b</time></time></date></sat>
VIIRS Moderate		<orbit>_c<date time="">_naoc_ops.h5</date></orbit>
Resolution Band SDR		

Example:

SVM01_j01_d20200817_t2317203_e2318448_b14239_c20200817233313298861_n oac_ops.h5

Moderate Resolution Records	GMTCO_ <sat>_d<date>_t<time>_e<tim E>_b<orbit>_c<date time="">_naoc_ops.h 5</date></orbit></tim </time></date></sat>
-----------------------------	---

Example:

GMTCO_j01_d20200817_t2317203_e2318448_b14239_c20200817233209765218_n oac_ops.h5

Conson Data	GITCO_ <sat>_d<date>_t<time>_e<time th="" <=""></time></time></date></sat>
Records	>_b <orbit>_c<date time="">_naoc_ops.h5</date></orbit>
	Sensor Data Records

Example:

GITCO_j01_d20200817_t2317203_e2318448_b14239_c20200817233209708558_no ac_ops.h5

Where:

<VERSION> - version of file as <v?r?>

<SAT> - the type of satellite used (e.g., j01, j02, npp)

<DATE> - format of <YYYYmmdd>

For the above format definitions, YYYY is the 4-digit year, mm is the 2-digit month, dd is the 2-digit day, HH is the 2-digit hour, MM is the 2-digit minute, and sss is the 3 digit second (the third 's' is 10^{ths} of a second).

2.3 Input Ancillary Data

The main algorithm ingests several dynamic files and static lookup tables. The static files are provided with the delivery. The enterprise cloud mask, cloud height file, aerosol optical depth file, and GFS files at the pixel level are dynamic ancillary data files. **Table 2-2** contains the file names and a brief description of the dynamic files, and the static files are presented in **Table 2-3**.

Table 2-2 - Dynamic Ancillary Data Files

PDA ShortName and Item	Description	Product FileName
JRR-AOD Aerosol Optical Depth	NUPS	JRR- AOD_ <version>_<sat>_s<date time="">_ e<date time="">_c<date time="">.nc</date></date></date></sat></version>

Example:

JRR-

AOD_v2r3_j01_s202008172317203_e202008172318448_c202008172343240.nc

JRR-CloudHeight	NUPs	JRR-
Cloud Height Product		CloudHeight_ <version>_<sat>_s<date <="" td=""></date></sat></version>
		TIME>_e <date time="">_c<date time="">.nc</date></date>

Example: JRR-

CloudHeight_v2r3_j01_s202008172317203_e202008172318448_c20200817234012 0.nc

JRR-CloudMask	NUPs	JRR-
Enterprise Cloud		CloudMask_ <version>_<sat>_s<date t<="" td=""></date></sat></version>
Mask		IME>_e <date time="">_c<date time="">.nc</date></date>

<TIME> - format of <HHMMsss>

<DATE/TIME> - format of <YYYYmmddHHMMsss>

<ORBIT> - Orbit number, a five-digit number continuously increasing over time

Example:

JRR-

CloudMask v2r3 j01 s202008172317203 e202008172318448 c202008172340050. nc

NWP_GFS	NUPs	NWP_GFS_ <version>_<sat>_s<date th="" ti<=""></date></sat></version>
GFS Data		ME>_e <date time="">_c<date time="">.nc</date></date>

Example:

NWP GFS v2r3 j01 s202008172317203 e202008172318448 c202008172343040.

Where:

<VERSION> - version of file as <v?r?>

<SAT> the type of satellite used (e.g., j01, j02, npp)

<DATE> - format of <YYYYmmdd>

<TIME> - format of <HHMMsss>

<DATE/TIME> - format of <YYYYmmddHHMMsss>

<YYYY> - Year

For the above format definitions, YYYY is the 4-digit year, mm is the 2-digit month, dd is the 2-digit day, HH is the 2-digit hour, MM is the 2-digit minute, and sss is the 3 digit second (the third 's' is 10ths of a second).

Table 2-3 - Static Ancillary Data Files

File Name	File Description
aot	Table of 20 aerosol optical thicknesses
vzen	Table of 40 viewing angles
szen	Table of 38 solar zenith angles
reflec	Table of reflectivities, one value each for
	combinations of:
	 4 aerosol models
	- 20 AOT values
	- 9 M-bands
	- 5527 scattering angle combinations
trans	Table of transmittances, one value each for
	combinations of:
	 4 aerosol models
	- 20 AOT values
	- 9 M-bands

	- 15 solar zenith angle bins
- U I -	Ŭ
albedo	Table of albedos, one value each for
	combinations of
	 4 aerosol models
	- 20 AOT values
	- 9 M-bands
VIIRS-SR-IncScatAngles-	Scattering Angle Increment
LUT_v1.5.06.02_LP	
VIIRS-SR-ScatAngDims-	Location of the first (maximum) scattering
LUT_v1.5.06.02_LP	angle corresponding to a pair of solar/sensor
	zenith angles
VIIRS-SR-IP-AC-INT v1.5.06.02 LP	- Min/Max for Retrieved Surface
	Reflectance
	- Min/Max for Aerosol Optical Depth
	- Minimum value for GFS water vapor,
	ozone, surface pressure
	•
	- Aerosol Min/Max Model Values
	- Rayleigh Optical Depth
	- Ozone (1 value), water vapor (3
	values), and other gas (6 values)
	transmittance coefficients.

3. PERFORMANCE

3.1 Product Testing

3.1.1 Test Data Description

Test cases will be provided with each delivery of the processing system to ensure product verification can occur before the system becomes operational. Each test case will provide satellite input data, static ancillary data, dynamic ancillary data, and any additional resulting product datasets. All requirements listed in the Requirements Allocation Document (RAD) associated with each science algorithm within the processing system must be met during testing. Once end users of the products are satisfied that all requirements have been sufficiently met, the products will be transitioned into operations.

3.1.2 Unit Test Plans

Testing of all products produced by the processing system will occur with each update of the system. The science team(s) develop, test the accuracy of, and validate each of the products. The Office of Satellite Ground Services (OSGS) is responsible for testing each algorithm and script to ensure all RAD requirements are met. Before each product

becomes operational, the products must be tested to ensure they run successfully on the intended system. If there are any issues that arise during testing procedures, all relevant groups must work together to "iron-out" these issues.

3.2 Product Accuracy

The Surface Reflectance products must meet accuracy standards set forth by the science team and can be found in the RAD document.

3.2.1 Test Results

The Algorithm Theoretical Basis Document (ATBD) associated with the Surface Reflectance algorithms contain the results of the science team's algorithm validation tests. Please note that each science algorithm will have its own separate ATBD.

3.2.2 Product Accuracy

VIIRS Surface Reflectance products have been validated against observations. The accuracy and precision of these products fall well within the accuracy and precision specifications. For more information concerning any product's accuracy, please contact the appropriate Product Area Lead (PAL) at OSPO. The product accuracy specifications are shown in Table 3-1.

Table 3-1 – Summary of VIIRS Surface Reflectance Product Performance

Products/Retrievals	Precision	Accuracy	Accuracy Specs
Surface	No specific	Threshold:	where r denotes the
Reflectance	threshold or	0.01+0.1r	retrieved surface
	objective.	Objective:	reflectance.
		0.005+0.05r	

3.3 Product Quality Output

There are seven quality flags in the VIIRS Surface Reflectance file, listed as QF1 through QF7. These fields are bit-mapped quality fields for the inputs and outputs of the algorithm. These are listed in Table 3-2 through Table 3-8. Tables are ordered from the most significant bit (7) to the least significant bit (0).

Table 3-2 - QF1 Surface Reflectance

Bit #	Meaning
7	(Empty)
6	Sun Glint
	0: no sun glint detected
	1: sun glint detected
5	Low Sun Mask
	0: high
	1: low
4	Day/Night Flag
	0: day
	1: night
2-3	Cloud Detection and Confidence
	00: confident clear
	01: probably clear
	10: probably cloudy
	11: confidence cloudy
0-1	Cloud Mask Quality (currently undefined)
	00: poor
	01: low
	10: medium
	11: high

Table 3-3 - QF2 Surface Reflectance

Bit #	Meaning
7	Thin Cirrus Detected – Emissive Test
	0: no cloud
	1: cloud
6	Thin Cirrus Detected – Reflective Test
	0: no cloud
	1: cloud
5	Snow/Ice Flag
	0: no snow/ice
	1: snow or ice
4	Heavy Aerosol Mask
	0: no heavy aerosol
	1: heavy aerosol
3	Cloud Shadow Mask
	0: no cloud shadow
	1: shadow

0-2	Land/Water Background
	001: deep ocean
	010: shallow water
	011: land
	100: snow
	101: arctic
	110: Antarctic and Greenland
	111: desert

Table 3-4 - QF3 Surface Reflectance

Bit #	Meaning
7	Bad M10 SDR data
	0: no
	1: yes
6	Bad M8 SDR data
	0: no
	1: yes
5	Bad M7 SDR data
	0: no
	1: yes
4	Bad M5 SDR data
	0: no
	1: yes
3	Bad M4 SDR data
	0: no
	1: yes
2	Bad M3 SDR data
	0: no
	1: yes
1	Bad M2 SDR data
	0: no
	1: yes
0	Bad M1 SDR data
	0: no
	1: yes

Table 3-5 - QF4 Surface Reflectance

Bit # Meaning	Bit #	Meaning				
-----------------	-------	---------	--	--	--	--

7	Missing Precipitable Water data
	0: no
	1: yes
6	Invalid Land AM input data
	0: valid
	1: invalid or over ocean
5	Missing AOT input data
	0: no
	1: yes
4	Overall Quality of AOT
	0: good
	1: bad
3	Bad I3 SDR data
	0: no
	1: yes
2	Bad I2 SDR data
	0: no
	1: yes
1	Bad I1 SDR data
	0: no
	1: yes
0	Bad M11 SDR data
	0: no
	1: yes

Table 3-6 - QF5 Surface Reflectance

Bit #	Meaning
7	Overall Quality of M7 Surface Reflectance Data
	0: good
	1: bad
6	Overall Quality of M5 Surface Reflectance Data
	0: good
	1: bad
5	Overall Quality of M4 Surface Reflectance Data
	0: good
	1: bad
4	Overall Quality of M3 Surface Reflectance Data
	0: good
	1: bad
3	Overall Quality of M2 Surface Reflectance Data
	0: good

	1: bad
2	Overall Quality of M1 Surface Reflectance Data
	0: good
	1: bad
1	Missing Surface Pressure input data
	0: no
	1: yes
0	Missing total column ozone input data
	0: no
	1: yes

Table 3-7 - QF6 Surface Reflectance

Bit #	Meaning
7	Unused
6	Unused
5	Overall Quality of I3 Surface Reflectance Data
	0: good
	1: bad
4	Overall Quality of I2 Surface Reflectance Data
	0: good
	1: bad
3	Overall Quality of I1 Surface Reflectance Data
	0: good
	1: bad
2	Overall Quality of M11 Surface Reflectance Data
	0: good
	1: bad
1	Overall Quality of M10 Surface Reflectance Data
	0: good
	1: bad
0	Overall Quality of M8 Surface Reflectance Data
	0: good
	1: bad

Table 3-8 - QF7 Surface Reflectance

Bit #	Meaning
7	Unused

6	Unused
5	Unused
4	Thin Cirrus Flag
	0: no
	1: yes
2-3	Aerosol Quantity
	00: climatology
	01: low
	10: average
	11: high
1	Adjacent to Cloud (currently undefined)
	0: no
	1: yes
0	Snow Present
	0: no
	1: yes

Details regarding statistical quality information NetCDF variable (quality_information) are as follows:

PercentCloud

PercentLand

PercentWater

long_name (includes the metadata: total number of retrievals, percentage of optimal retrievals, percentage of bad retrievals)

percent cloud shadow

percent low sun

percent missing for band I1

percent missing for band 12

percent missing for band 13

percent missing for band M1

percent missing for band M10

percent missing for band M11

percent missing for band M2

percent missing for band M3

percent missing for band M4

percent missing for band M5

percent missing for band M7

percent_inissing_ioi_band_ivi*i*

percent_missing_for_band_M8

percent_poor_retrieval_for_I1

percent_poor_retrieval for I2

percent_poor_retrieval_for_l3

percent_poor_retrieval_for_M1

percent poor retrieval for M10

percent_poor_retrieval_for_M11
percent_poor_retrieval_for_M2
percent_poor_retrieval_for_M3
percent_poor_retrieval_for_M4
percent_poor_retrieval_for_M5
percent_poor_retrieval_for_M7
percent_poor_retrieval_for_M8
percentage_bad_retrievals
percentage_optimal_retrievals
total_number_retrievals

3.4 External Product Tools

No external product tools are supplied. The Surface Reflectance output file is in netCDF4 format. External users can choose their own tools to display and analyze these output files with any publicly available netCDF tools.

4. PRODUCT STATUS

4.1 Operations Documentation

NESDIS/OSPO (2023), VIIRS Surface Reflectance System Maintenance Manual (SMM)

NESDIS/OSPO (2019), Surface Reflectance Requirements Allocation Document (RAD)

NESDIS/STAR (2023), VIIRS Surface Reflectance Delivery (CCAP) Documents (Readme file, PCF-PSF document, Production Rules, and the Delivery Memo)

NOAA/CIRA (2018): Surface Reflectance Algorithm Theoretical Basis Document (ATBD)

4.2 Maintenance History

Please see the VIIRS Surface Reflectance System Maintenance Manual, Section 5 "Monitoring and Maintenance" for detailed information about monitoring and maintenance support.

END OF DOCUMENT