Office of Satellite and Product Operations Environmental Satellite Processing Center

Regional Advanced Baseline Imager and Visible Infrared Imaging Radiometer Suite Emissions External Users' Manual

Version 2.2 August 30, 2024

U.S. Department of Commerce National Oceanic and Atmospheric Administration National Environmental Satellite, Data, and Information Service Office of Satellite and Product Operations

Authors

Emily Doss (OCS)

Shobha Kondragunta (NOAA/NESDIS/STAR)

Fangjun Li (South Dakota State University)

Xiaoyung Zhang (South Dakota State University)

Chuanyu Xu (IMSG)

Updated by Jeffrey Augenbaum (OMS, ERT)

Approval Page

Environmental Satellite Processing Center Regional Advanced Baseline Imager and Visible Infrared Imaging Radiometer Suite Emissions External Users' Manual

GROUP: OMS	Date: 09/09/2024	GROUP: OSPO	Date: 10/29/2024
Jeffrey Augenbaum, Lea	d Programmer	Hanjun Ding, Product Area	Lead
GROUP: OMS	Date: 10/09/2024		
Clay Davenport, Product	s Manager		

Changes/Revisions Record

This external users' manual is changed as required to reflect system, operational, or organizational changes. Modifications made to this document are recorded in the Changes/Revisions Record below. This record will be maintained throughout the life of the document.

Version Number	Date	Description of Change/Revision	Section/Pages Affected	Changes Made by Name/Title/ Organization
1.0	4/26/2023	N/A, Original version of the document	All	Doss
1.1	8/02/2023	Updated "Description of RAVE Output File Contents" and "Description of RAVE Output File Metadata" tables and accompanying text	1.3 (p. 12-22)	Doss
1.2	8/15/2023	Updated sources of satellite data	2.1, 3.3 (p. 23, 29)	Doss
2.0	11/07/2023	Inputs updated from VIIRS Active Fires data to VIIRS Enterprise Fires data	All	Doss
2.1	1/25/2024	Updated product team, Updated sources of satellite data	1.1.2, 2.2.1.2, 2.2.3 (p. 9, 25, 25- 26)	Doss
2.1.1	08/2024	Updated for NCCF; Added links to product monitoring, visualization	All; 3.5, 3.5.1	Augenbaum
2.2	08/30/2024	Transfer contents to latest template, perform minor copy editing and formatting;	All	Hannah Willett, Technical Writer, ERT Inc.
2.2	09/03/2024	Quality Assurance	All	Clint Sherwood, Quality Assurance Manager, ERT Inc.

Preface

This document comprises the National Oceanic and Atmospheric Administration (NOAA) National Environmental Satellite, Data, and Information Service (NESDIS), Office of Satellite and Product Operations (OSPO), publication of this Regional Advanced Baseline Imager and Visible Infrared Imaging Radiometer Suite Emissions (RAVE) External Users' Manual (EUM). This document reflects current operations for the DOC/NOAA/NESDIS Environmental Satellite Processing Center (ESPC) (NOAA5045) information technology systems. This document describes the established ESPC procedures for external users of RAVE in accordance with Federal, DOC, NOAA, NESDIS and OSPO requirements.

Future updates and revisions to this document will be produced and controlled by DOC/NOAA/NESDIS for ESPC information technology systems.

The published version of this document can be found at the OSPO SharePoint Products Library.

Table of Contents

1.	Produc	ts	1
	1.1. Prod	uct Overview	1
	1.1.1.	Product Requirements	1
	1.1.2.	Product Team	2
	1.1.3.	Product Description	2
	1.2. Prod	uct History	3
	1.3. Prod	uct Access	3
2.	Algorit	hm	9
	2.1. Algo	rithm Overview	9
	2.2. Inpu	t Satellite Data	10
	2.2.1.	Satellite Instrument Overview	10
	2.2.1.1. 2.2.1.2.		10 11
	2.2.2.	Satellite Data Preprocessing Overview	11
	2.2.3.	Input Satellite Data Description	12
	2.3. Inpu	t Ancillary Data	13
3.	Perform	mance	14
	3.1. Prod	uct Testing	14
	3.1.1.	Test Data Description	14
	3.1.2.	Unit Test Plans	14
	3.2. Prod	uct Accuracy	14
	3.2.1.	Test Results	14
	3.2.2.	Product Accuracy	14
	3.3. Prod	uct Quality Output	14
	3.4. Exten	rnal Product Tools	15
	3.5. Outp	out Files	15
	3.5.1.	Product Monitoring and Visualization	15
4.	Produc	et Status	15
	4.1. Oper	rations Documentation	15
	4.2. Mair	ntenance History	16

5. Acronyms.......17

List of Tables

Table 1-1 - Required RAVE Output File Information	1
Table 1-2 - Additional RAVE Requirements	1
Table 1-3 - Product Team Member Information	2
Table 1-4 - Species of Emissions Monitored by RAVE	2
Table 1-5 - RAVE Output File Naming Conventions	3
Table 1-6 - Description of RAVE Output File Contents	4
Table 1-7 - Description of RAVE Output File Metadata	7
Table 2-1 - ABI Fire Observation Categories	11
Table 2-2 - Input File Naming Conventions	12
Table 3-1 - RAVE Quality Flag Information	14
List of Figures	
Figure 1-1 - Sample PNG Output File	9
Figure 2-1 - Processing Overview of RAVE	10

1. Products

This is an External Users' Manual (EUM) describing the Regional Advanced Baseline Imager and Visible Infrared Imaging Radiometer Suite Emissions (RAVE) algorithm package. There are three types of expected output files. Each of the following expected output files will be produced hourly:

- 3 km Biomass Burning Emissions NetCDF4 File
- 13 km Biomass Burning Emissions NetCDF4 File
- Fine Particulate Matter PNG File

The intended users of this EUM are the end users of the RAVE expected output files and the product verification and validation (V&V) teams. External users are users who do not have direct access to the processing system. The purpose of this EUM is to provide the document's users with information that will enable them to acquire the products, understand the product's features, and use any associated data or files included in the products.

1.1. Product Overview

1.1.1. Product Requirements

The RAVE expected output files must contain the information shown in Table 1-1. The algorithm package must be capable of conforming to the additional requirements listed in Table 1-2.

Requirement Number	Requirement
1	Fire Radiative Power
2	Hourly Emissions of PM _{2.5}
3	Hourly Emissions of Organic Carbon
4	Hourly Emissions of Black Carbon
5	Hourly Emissions of Methane
6	Hourly Emissions of Carbon Dioxide
7	Hourly Emissions of Nitrogen Dioxide
8	Hourly Emissions of Carbon Monoxide
9	Hourly Emissions of Total Particulate Matter
10	Hourly Emissions of Volatile Organic Compounds
11	Hourly Emissions of Sulfur Dioxide
12	Hourly Emissions of Ammonia

Table 1-1 - Required RAVE Output File Information

Table 1-2 - Additional RAVE Requirements

Requirement	Value
Domain	North America
Latency	1 Hour
Refresh Rate	1 Hour
Spatial Resolution	3 km, 13 km
Product Accuracy	20%

1.1.2. Product Team

Table 1-3 - Product Team Member Information

Team Member	Organization	Role	Contact Information
Walter Wolf	OCS	Product Management	walter.wolf@noaa.gov
		Division Chief	
Shobha Kondragunta	STAR	Science Team Lead	shobha.kondragunta@noaa.gov
Xiaoyang Zhang	SDSU	Science Team	xiaoyang.zhang@sdstate.edu
Chuanyu Xu	SDSU	Science Team	chuanyu.xu@noaa.gov
Fangjun Li	SDSU	Science Team	fangjun.li@sdstate.edu
Hanjun Ding	OSPO	PAL	hanjun.ding@noaa.gov
Yufeng Zhu	OSPO	OSPO Team Member	yufeng.zhu@noaa.gov
Claire McCaskill	NESDIS	PPM	claire.mccaskill@noaa.gov
Kelly Neely	NESDIS	PIB	kelly.neely@noaa.gov
Priyanka Roy	OCS	ASSISTT Management Team	priyanka.roy@noaa.gov
Letitia Soulliard	OCS	ASSISTT Standalone	letitia.soulliard@noaa.gov
		Integration Team Lead	
Shukming Wu	OCS	ASSIST Standalone	shukming.wu@noaa.gov
		Integration Team Lead	
Andres Garcia-Escovar	OCS	ASSISTT Standalone	andres.garcia-escovar@noaa.gov
		Integration Team	
Milap Patel	OCS	ASSISTT Standalone	milap.patel@noaa.gov
		Integration Team	
Yunhui Zhao	OCS	ASSISTT Configuration	yunhui.zhao@noaa.gov
		Management Team Lead	
Ramaswamy	OCS	ASSISTT R2O Team Lead	ramaswamy.tiruchirapalli@noaa.gov
Tiruchirapalli			
Perry Bunn	OCS	ASSISTT R2O Team	perry.bunn@noaa.gov
Emily Doss	OCS	ASSISTT Technical Writer	emily.doss@noaa.gov
Tracey Dorian	OCS	ASSISTT Lifecycle QA	tracey.dorian@noaa.gov
		Team Lead	
Edrees Wardak	OCS	ASSISTT Lifecycle QA	edrees.wardak@noaa.gov
		Team	
Hua Xie	OCS	ASSISTT Science QA Team	hua.xie@noaa.gov
		Lead	

1.1.3. Product Description

Table 1-4 displays the different emissions that the RAVE Science Algorithm (SA) is capable of monitoring.

Table 1-4 - Species of Emissions Monitored by RAVE

Emission Abbreviation	Meaning
CH ₄	Methane
CO_2	Carbon Dioxide
CO	Carbon Monoxide
$PM_{2.5}$	Fine Particulate Matter
TPM	Total Particulate Matter
SO_2	Sulfur Dioxide
OC	Organic Carbon
BC	Black Carbon
NO_x	Nitrogen Oxides

Version 2.2 August 2024

Emission Abbreviation	Meaning
NH ₃	Ammonia
VOC	Volatile Organic Compound

RAVE expected output files can also provide the following information:

- Hourly Mean Fire Radiative Power (FRP)
- Hourly Fire Radiative Energy (FRE)
- Dry Mass (DM) Consumed

All NetCDF4 expected output files will have a 0.03° X 0.03° gridded resolution. The domain of interest will cover 3.5°N to 81.8°N and 144.96°E to 27.84°W (i.e., North America).

1.2. Product History

The initial delivery of the RAVE algorithm package was delivered in April of 2023. The second version of this algorithm package was delivered in November of 2023 and updates the algorithm package to use VIIRS Enterprise Fires products as inputs rather than VIIRS Active Fires products.

1.3. Product Access

The NESDIS Policy on Access and Distribution of Environmental Data and Products is provided at http://www.ospo.noaa.gov/Organization/About/access.html.

Users need to fill out the Data Access Request Form. This form can be downloaded from the same webpage where the NESDIS Policy on Access and Distribution of Environmental Data and Products is displayed. A completed copy of the form should be sent to both the PAL and the OSPO Data Access Team (nesdis.data.access@noaa.gov). Once the request is approved, the data will be delivered using the Product Distribution and Access (PDA) system. ESPC User Services (SPSDuserservices@noaa.gov) should be contacted for any data accessibility and data distribution problems.

The 3 km and 13 km NetCDF4 expected output files will be archived at CLASS/NCEI. The PNG expected output file will not be archived.

Table 1-5 describes the file naming convention associated with the RAVE expected output files.

Table 1-5 - RAVE Output File Naming Conventions

Type of	Naming Convention
File	
3 km	RAVE-HrlyEmiss-
NetCDF	3km_ <v#r#>_blend_s<yyyymmddhhmmsss>_e<yyyymmddhhmmsss>_c<yyyymmddhh< td=""></yyyymmddhh<></yyyymmddhhmmsss></yyyymmddhhmmsss></v#r#>
4	MMSSS>.nc
Output	
File	
13 km	RAVE-HrlyEmiss-
NetCDF	13km_ <v#r#>_blend_s<yyyymmddhhmmsss>_e<yyyymmddhhmmsss>_c<yyyymmddhh< td=""></yyyymmddhh<></yyyymmddhhmmsss></yyyymmddhhmmsss></v#r#>
4	MMSSS>.nc
Output	
File	

Version 2.2 August 2024

Type of	Naming Convention
File	
PNG	PM25_ <v#r#>_blend_s<yyyymmddhhmmsss>_e<yyyymmddhhmmsss>_c<yyyymmddh< td=""></yyyymmddh<></yyyymmddhhmmsss></yyyymmddhhmmsss></v#r#>
Output	HMMSSS>.png
File	

Where:

<v#r#></v#r#>		the version and release numbers associated with the algorithm package formatted as a v, version number, r, release number (e.g., v3r2 is the 3 rd version, 2 nd release of the algorithm package)
<yyyymmddhhmmsss></yyyymmddhhmmsss>	→	the 4-digit year, 2-digit month, 2-digit day, 2-digit hour, 2-digit minute, 3-digit second timestamp representing the start, end, and creation time of the product file

Table 1-6 provides a description of the expected contents of all NetCDF4 output files produced by the RAVE algorithm package. For some variables listed in the output variable table, the 3 km and 13 km NetCDF4 expected output files will have different ranges. When applicable, this will be indicated in the "Range" column.

Table 1-6 - Description of RAVE Output File Contents

Variable	Type	Description	Dimensions	Units	Range
BC	32-bit	BC Biomass	3	kg	3km: 0.01,
	floating point	Emissions			1.50000005E10
	point				13km: 0.01,
					2.99999986E11
BC_scaled	32-bit	Scaled BC Biomass	3	kg	3km: 0.01,
	floating	Emissions			6.7499999E10
	point				13km: 0.01,
					2.99999986E11
CH4	32-bit	CH4 Biomass	3	kg	3km: 0.01,
	floating	Emissions			1.50000005E10
	point				13km: 0.01,
					2.99999986E11
CO	32-bit	CO Biomass	3	kg	3km: 0.01,
	floating	Emissions			1.50000005E10
	point				13km: 0.01,
					2.99999986E11
CO2	32-bit	CO2 Biomass	3	kg	3km: 0.01,
	floating	Emissions			1.50000005E10
	point				121
					13km: 0.01, 2.99999986E11
Cloud_Fraction	16-bit	Cloud Fraction	3	1	0, 100
_	integer				

Variable	Туре	Description	Dimensions	Units	Range
FRE	32-bit floating point	Fire Radiative Energy	3	MJ	3km: 36.0, 2.0E8 13km: 36.0, 4.0E9
FRP_MEAN	32-bit floating point	Mean Fire Radiative Power	3	MW	3km: 0.01, 500000.0 13km: 0.01, 2000000.0
FRP_SD	32-bit floating point	Standard Deviation of Fire Radiative Power	Standard Deviation of 3 MW		0.0, 500000.0
Metadata	32-bit integer	Maximum PM2.5 mass (kg), column and row of maximum PM2.5, mean PM2.5 mass (kg), total PM2.5 mass (kg)	mass (kg), column and row of maximum PM2.5, mean PM2.5 mass (kg), total		N/A
NH3	32-bit floating point	NH3 Biomass 3 Emissions		kg	3km: 0.01, 1.50000005E10 13km: 0.01, 2.9999986E11
NOx	32-bit floating point	NOx Biomass Emissions	3	kg	3km: 0.01, 1.50000005E10 13km: 0.01, 2.9999986E11
OC	32-bit floating point	OC Biomass Emissions	3	kg	3km: 0.01, 1.50000005E10 13km: 0.01, 2.9999986E11
OC_scaled	32-bit floating point	Scaled OC Biomass Emissions	3	kg	3km: 0.01, 6.7499999E10 13km: 0.01, 2.9999986E11
PM25	32-bit floating point	PM2.5 Biomass Emissions	3	kg	3km: 0.01, 1.50000005E10 13km: 0.01, 2.9999986E11
PM25_scaled	32-bit floating point	Scaled PM2.5 Biomass Emissions	3	kg	3km: 0.01, 6.7499999E10 13km: 0.01, 2.9999986E11
QA	8-bit character	Quality Assurance	3	1	1,3

Variable	Type	Description	Dimensions	Units	Range
SO2	320bit	SO2 Biomass	3	kg	3km: 0.01,
	floating	Emissions			1.50000005E10
	point				
					13km: 0.01,
					2.99999986E11
TPM	32-bit	TPM Biomass	3	kg	3km: 0.01,
	floating	Emissions			1.50000005E10
	point				121 0.01
					13km: 0.01, 2.99999986E11
VOCs	32-bit	VOCs Biomass	3	kg	3km: 0.01,
VOCS	floating	Emissions	3	kg	1.50000005E10
	point	Linissions			1.50000005L10
	Pome				13km: 0.01,
					2.99999986E11
area	32-bit	cell area	2	km**2	N/A
	floating				
	point				
grid_lat	32-bit	latitude	2	degrees_north	3km: 3.5, 81.8
	floating				
	point				13km: 7.1445,
				1	81.7786
grid_latt	32-bit	latitude	2	degrees_north	3km: 3.515,
	floating				81.785
	point				13km: 7.22291,
					81.7184
grid_lon	32-bit	longitude	2	degrees_east	3km: 144.96,
grid_ion	floating	longitude	-	degrees_east	332.16
	point				
	1				13km: 151.874,
					332.126
grid_lont	32-bit	longitude	2	degrees_east	3km: 144.975,
	floating				332.145
	point				
					13km: 151.981,
• •	22.1.1	11 1 1 1	27/4		332.019
grid_x	32-bit	cell corner longitude	N/A	1	3km: 1.0, 6241.0
	floating point				13km: 1, 801
grid_xt	32-bit	T-cell longitude	N/A	1	3km: 1.0, 6240.0
gnu_xt	floating	1-cen iongitude	19/73	1	JKIII. 1.U, 024U.U
	point				13km: 1, 800
grid_y	32-bit	cell corner latitude	N/A	1	3km: 1.0, 2611.0
5114_y	floating			1	2 1.0, 2011.0
	point				13km: 1, 545
grid_yt	32-bit	T-cell latitude	N/A	1	3km: 1.0, 2610.0
- *	floating				
	point				13km: 1, 544
land_cover	8-bit	land cover type	2	1	N/A
	character		1		

Variable	Type	Description	Dimensions	Units	Range
quality_information	32-bit integer	total number of retrievals, percentage of optimal retrievals, percentage of sub optimal retrievals, percentage of bad retrievals	N/A	N/A	N/A
time	16-bit integer	time	N/A	hours since coverage start time	N/A

Product monitoring metadata is included with each NetCDF output file produced by the RAVE algorithm package. These files include both collection and geographic level metadata. Table 1-7 provides a description of the metadata associated with the RAVE NetCDF4 expected output files.

Table 1-7 - Description of RAVE Output File Metadata

Name	Value	Type	Array Size
Conventions	Indicates the conventions associated with the file	String	Scalar
PRODUCT_ALGORITHM_VERSION	Provides the product-specific algorithm version	String	Scalar
RangeBeginningDate	Provides the beginning date of the range	String	Scalar
RangeBeginningTime	Provides the beginning time of the range	String	Scalar
RangeEndingDate	Provides the ending date of the range	String	Scalar
RangeEndingTime	Provides the ending time of the range	String	Scalar
TIME_RANGE	Provides the time range	String	Scalar
_NCProperties	NetCDF and HDF version numbers, will be automatically generated	String	Scalar
cdm_data_type States the geographic category the pro-		String	Scalar
creator_email	Email for the algorithm development team	String	Scalar
creator_name	Indicates the line office and algorithm team responsible for product development	String	Scalar
creator_url	Provides a URL to a website meant for end users	String	Scalar
date_created	UTC time the product file was created in 4-digit year, 2-digit month, 2-digit day, 2-digit hour, 2-digit minute, 2-digit second format	String	Scalar
day_night_data_flag	Will be set to "0" for night, "1" for day, or "2" for both depending on the sunlight conditions of the observation	String	Scalar
geospatial_lat_max	Describes the maximum latitude of the geospatial coverage of the grid, includes -90 (south) to 90 (north)	32-bit floating point	1
geospatial_lat_min	Describes the minimum latitude of geospatial coverage of the grid, includes -90 (south) to 90 (north)	32-bit floating point	1

Name	Value	Type	Array Size
geospatial_lat_resolution	Indicates resolution associated with geospatial latitude	3km: 32-bit	3km: 1 13km:
		floating	Scalar
		point	
		13km:	
		String	
geospatial_lat_units	Indicates unit associated with geospatial latitude	String	Scalar
geospatial_lon_max	Describes the maximum longitude of the	32-bit	1
-	geospatial coverage of the grid, includes -180	floating	
	(west) to 180 (east)	point	
geospatial_lon_min	Describes the minimum longitude of the	32-bit	1
	geospatial coverage of the grid, includes -180	floating	
	(west) to 180 (east)	point	
geospatial_lon_resolution	Indicates resolution associated with geospatial	3km:	3km: 1
	longitude	32-bit	13km:
		floating	Scalar
		point	
		13km:	
		String	
geospatial_lon_units	Indicates units associated with geospatial	String	Scalar
	longitude		
history	Indicates algorithm name and version	String	Scalar
	responsible for creating the file		
id	Unique identifier for the product	String	Scalar
institution	Indicates institution responsible for the	String	Scalar
	product file		
instrument	Provides the name of the instrument(s) used in	String	Scalar
	the creation of the product		
keywords	List of comma-separated keywords associated	String	Scalar
	with the product system		
metadata_link	Contains a URL where detailed metadata	String	Scalar
	information or a product information page is located		
naming_authority	Organization responsible for providing the	String	Scalar
	"id" attribute		
platform	Indicates the satellite(s) used to create the	String	Scalar
	product		
processing_level	Level of processing associated with the	String	Scalar
	product file		
production_environment	Processing string responsible for generating	String	Scalar
	the product		
production_site	Processing site for the product	String	Scalar
project	Indicates the name(s) of the project(s)	String	Scalar
	responsible for generating the original data		
	used as input to the algorithm package		
publisher_email	Provides an email that can be used to contact	String	Scalar
	the person or entity who is responsible for		
	publishing the output files to the proper end		
	users		
publisher_name	Provides the name of the organization	String	Scalar
	responsible for the product's publication		

Name	Value	Type	Array Size
publisher_url	Provides URL of the publisher's website	String	Scalar
source	Provides a list of all significant input files into	String	Scalar
	the product system as a comma separated list		
standard_name_vocabulary	Provides the name and corresponding version	String	Scalar
	number of the controlled vocabulary used		
summary	Provides a brief summary of the product	String	Scalar
time_coverage_end	Indicates the end time of the observation	String	Scalar
	associated with the file in 4-digit year, 2-digit		
	month, 2-digit day, 2-digit hour, 2-digit		
	minute, 2-digit second format		
time_coverage_start	Indicates the start time of the observation	String	Scalar
	associated with the file in 4-digit year, 2-digit		
	month, 2-digit day, 2-digit hour, 2-digit		
	minute, 2-digit second format		
title	Provides the short name for the product	String	Scalar

Figure 1-1 displays a sample PNG output file covering the domain of interest of the RAVE algorithm package.

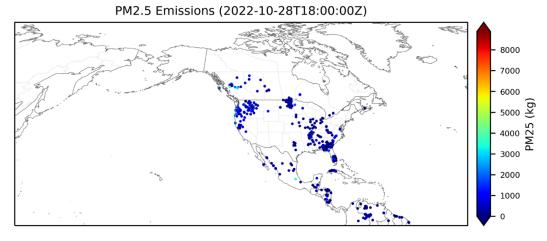


Figure 1-1 - Sample PNG Output File

2. Algorithm

This section provides an overview of the RAVE SA. For further details concerning this algorithm, please refer to the RAVE ATBD (NOAA/NESDIS/STAR, 2023) or the System Maintenance Manual (SMM) associated with this version of the algorithm package.

2.1. Algorithm Overview

Figure 2-1 provides an overview of the RAVE algorithm package's processing. This figure is originally from the RAVE ATBD (NOAA/NESDIS/STAR, 2023).

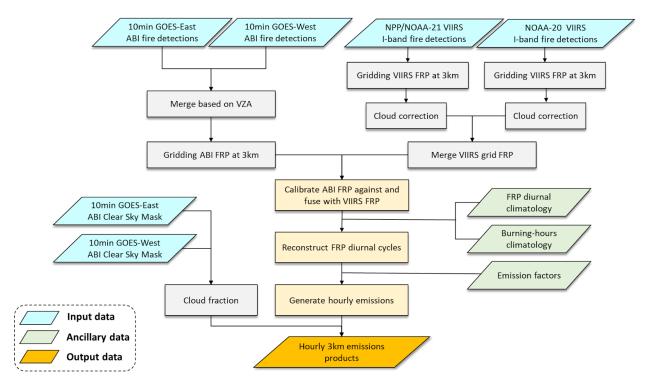


Figure 2-1 - Processing Overview of RAVE

The RAVE algorithm package processing merges ABI FRP datasets from GOES-16 (i.e., GOES-East) and GOES-18 (i.e., GOES-West) are merged. The GOES-17 satellite serves as a source of backup data for both GOES-16 and GOES-18. Then, this merged dataset is mapped to a 3 km grid. The VIIRS data from NPP/NOAA-21 and NOAA-20 is also mapped to a 3 km grid before it is corrected for clouds. After any needed corrections are made, the VIIRS datasets are merged.

Once both the ABI and VIIRS merged datasets are available, the ABI merged dataset is calibrated against the VIIRS merged dataset. Then, the ABI and VIIRS datasets are combined to create one merged FRP dataset. The FRP merged dataset allows for reconstruction of diurnal FRP cycles, and consequently, calculation of hourly emission data for each emission seen in Figure 2-1. While all hourly emissions product files are mapped to a 3 km grid, some end users require a 13 km grid to support existing air quality models. To meet the needs of these end users, the hourly emissions product files can be mapped to a 13 km grid.

2.2. Input Satellite Data

2.2.1. Satellite Instrument Overview

2.2.1.1. Advanced Baseline Imager

The Advanced Baseline Imager (ABI) instrument is currently flying on the GOES-R series of satellites. ABI can observe the domain of interest (i.e., North America) every ten minutes (Schmit et

al., 2017) ¹. These observations provide key fire detection data used by the algorithm package to calculate FRP. The following information is provided with each fire detection by the ABI instrument (Schmidt et al., 2012):

- Coordinates of Observation Location
- Time of Observation
- FRP
- Fire Flag
- Legacy Instantaneous Fire Size
- Fire Temperature Estimate

Table 2-1 lists the categorization groups for the ABI fire observations (Schmidt et al., 2012).

Group Number	Group Type	Is FRP Provided?	
1	Processed / Good Quality	Yes	
2	Saturated	High Probability	
3	Cloud/Smoke Partially Contaminated	High Probability	
4	High Probability	High Probability	
5	Medium Probability	High Probability	
6	Low Probability	Medium Probability	

Table 2-1 - ABI Fire Observation Categories

The first three categorization groups (i.e., Table 2-1 Groups 1, 2, & 3) contain data that will very likely meet all requirements for observed data. The second three categorization groups (i.e., Table 2-1 Groups 4, 5, & 6) may still meet some requirements for observed data, but is not expected to meet all requirements.

2.2.1.2. Visible Infrared Imaging Radiometer Suite

The Visible Infrared Imaging Radiometer Suite (VIIRS) instrument is currently flying onboard the S-NPP, NOAA-20, and NOAA-21 satellites, which are part of the Joint Polar Satellite System (JPSS). The wide swath width of the VIIRS data allows for observation of the whole domain of interest (Cao et al., 2014). VIIRS has a unique band configuration that allows for detection of the majority of fire pixels within the swath (Csiszar et al., 2014). These bands are listed below:

- Moderate Resolution 4 µm Band (750 m)
- Imaging Resolution I-4 Band (375 m)

2.2.2. Satellite Data Preprocessing Overview

There are no preprocessing steps required for satellite data files ingested into the RAVE algorithm package.

_

¹ This is a portion of the Full Disk scan covering the domain of interest.

2.2.3. Input Satellite Data Description

Table 2-2 describes the file naming conventions of the satellite input data files required by the RAVE algorithm package.

Table 2-2 - Input File Naming Conventions

Type of Input	File Naming Convention	
ABI L2 Full Disk Clear Sky Mask Product	OR_ABI-L2-ACMF-	
	M6_ <abi_sat>_s<start_date>_e<end_date>_c<creation_date>.nc</creation_date></end_date></start_date></abi_sat>	
ABI L2 Full Disk Active Fire Product	OR_ABI-L2-FDCF-	
	M6_ <abi_sat>_s<start_date>_e<end_date>_c<creation_date>.nc</creation_date></end_date></start_date></abi_sat>	
VIIRS I-Band L2 Enterprise Fire Products	EFIRE-VIIRSI_ <v#r#>_<eviirs_sat>_</eviirs_sat></v#r#>	
	s <vstart_date>_e<vend_date>_c<vcreation_date>.nc</vcreation_date></vend_date></vstart_date>	
VIIRS I-Band L1b Geolocation Products	GITCO_ <viirs_sat>_d<f1>_t<f2>_e<f3>_b<f4>_c<f5>_oebc_ops.h5</f5></f4></f3></f2></f1></viirs_sat>	

Where:

<abi_sat></abi_sat>	\rightarrow	the satellite for ABI input data; will be G16, G17, or G18
<start_date></start_date>	\rightarrow	the starting timestamp of the data observations in 4-digit year, 3-digit Julian day, 2-digit hour, 2-digit minute, 3-digit second format
<end_date></end_date>	\rightarrow	the ending timestamp of the data observations in 4-digit year, 3-digit Julian day, 2-digit hour, 2-digit minute, 3-digit second format
<creation_date></creation_date>	→	the creation timestamp of the data observations in 4-digit year, 3-digit Julian day, 2-digit hour, 2-digit minute, 3- digit second format
<vstart_date></vstart_date>	→	the starting timestamp of the VIIRS data observations in 4-digit year, 2-digit month, 2-digit day, 2-digit hour, 2-digit minute, 3-digit second format
<vend_date></vend_date>	\rightarrow	the ending timestamp of the VIIRS data observations in 4-digit year, 2-digit month, 2-digit day, 2-digit hour, 2-digit minute, 3-digit second format
<vcreation_date></vcreation_date>	→	the creation timestamp of the VIIRS data observations in 4-digit year, 2-digit month, 2-digit day, 2-digit hour, 2-digit minute, 3-digit second format
<v#r#></v#r#>	\rightarrow	the version number and release number (e.g., v3r2 indicates the third version, second release)

<viirs_sat></viirs_sat>	\rightarrow	the satellite for VIIRS input data; will be j01, j02, or npp
<eviirs_sat></eviirs_sat>	\rightarrow	the satellite for VIIRS Enterprise Fire input data; will be n20, n21, or npp
<f1></f1>	→	the 4-digit year, 2-digit month, 2-digit day of the earliest granule in the file's dataset; based on the Beginning_Date metadata of the 1 st granule in the HDF5 file
<f2></f2>	\rightarrow	the 2-digit hour, 2-digit minute, 3-digit second of the earliest granule in the file's dataset; based on the Beginning_Time metadata of the 1 st granule in the HDF5 file
<f3></f3>	→	the 2-digit hour, 2-digit minute, 3-digit second of the latest granule in the file's dataset; based on the Ending_Time metadata of the last granule in the HDF5 file
<f4></f4>	\rightarrow	the 5-digit orbit number that the dataset originated from; orbit begins at the ascending node and the number indicates the earliest granule produced in the data product
<f5></f5>	\rightarrow	the creation date in 4-digit year, 2-digit month, 2-digit day, 2-digit hour, 2-digit minute, 8-digit second format

2.3. Input Ancillary Data

The RAVE algorithm package does not require any dynamic ancillary datasets. All static ancillary files needed by the algorithm package are in the directory listed below, where \$CODE is the root directory of the RAVE algorithm package:

\$CODE/ancillary_data/

Please note that the static ancillary data files must be found in this directory. If the files are missing from this location, the algorithm package may not be able to successfully run and generate the expected output product files.

3. Performance

3.1. Product Testing

3.1.1. Test Data Description

Test cases are provided with each algorithm package for product verification before the algorithm package is transitioned into operations. These test cases provide input, any needed ancillary data, and any additional product datasets required for product verification. Please refer to the RAVE ATBD (NOAA/NESDIS/STAR, 2023).

3.1.2. Unit Test Plans

All expected output product files will be tested with each update to the algorithm package. The science teams, who are responsible for developing the product files, will test them for accuracy and validity. Each algorithm package will be tested to ensure all necessary requirements are met. Operations personnel must test the products to ensure the expected output files can be generated on the intended system. If any issues arise during the testing procedures, they must be dealt with and resolved before the algorithm package can be transitioned into operations.

3.2. Product Accuracy

3.2.1. Test Results

For more information concerning the test results, please refer to the RAVE ATBD (NOAA/NESDIS/STAR, 2023).

3.2.2. Product Accuracy

All RAVE expected output product files have been validated against observations to ensure their accuracy and precision falls within all requirements and specifications. For more information concerning product accuracy, please contact the Product Area Lead (PAL).

3.3. Product Quality Output

Table 3-1 provides a description of the quality flags used throughout the RAVE algorithm package. Please note that if data has a lower quality flag, it should be used with caution. Table 3-1 was originally provided in the RAVE ATBD (NOAA/NESDIS/STAR, 2023).

Table 3-1 - RAVE Quality Flag Information

Quality Flag	Description
High	 Hours when ABI and/or VIIRS have confident fire observations (i.e., the "Processed" category for ABI) in clear-sky condition (for both fire grid and 8 neighboring grids)
Medium	 Hours when "High" class (above) spatially neighboring to more than one cloudy grid (determined based on "cloud fraction" information). Hours when with saturated/cloudy/smoky ABI fire detections. Hours when high/medium/low possibility in ABI fire detection, with fires detected by VIIRS during the past 24 hours. Hours when predicted FRP (from climatology) temporally neighboring to the "high" or "medium" quality class from above.

Quality Flag	Description
Low	 Hours with medium/low possibility in ABI fire detections and without VIIRS fires during past 24 hours Hours with predicted FRP from climatology Open shrub and barren grids where only ABI observed fires (without VIIRS fire detections) during past 24 hours (false alarms in ABI fire detections frequently occur in the southwest CONUS) Grids where both GOES-East and GOES-West ABI's view zenith angle > 60°
	• Solar zenith angle $(80^{\circ} < SZA < 90^{\circ})$

3.4. External Product Tools

There are no external product tools provided with the RAVE algorithm package. For the NetCDF4 expected output files, end users can use a tool of their choice to view, or visualize, these files.

3.5. Output Files

RAVE final products are available on PDA for user subscription. The data retention time on PDA is the standard 7 days.

3.5.1. Product Monitoring and Visualization

Product quality is monitored using the NCCF Product Monitoring Tool at https://nccf.espc.nesdis.noaa.gov/mtool/index.html.

Users can use this page to monitor summaries of the RAVE quality based on parameter thresholds determined by the PAL.

The NCCF Products Visualization Page is located at https://www.ospo.noaa.gov/products/land/rave/.

RAVE products are generated hourly. Product images from the past 24 hours are kept on the RAVE product page

4. Product Status

4.1. Operations Documentation

- Cao, C., Luccia, F.J.D., Xiong, X., Wolfe, R., & Weng, F. (2014). Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite. Ieee Transactions on Geoscience and Remote Sensing, 52, 1142-1156, https://doi.org/10.1109/TGRS.2013.2247768.
- Csiszar, I., Schroeder, W., Giglio, L., Ellicott, E., Vadrevu, K.P., Justice, C.O., & Wind, B. (2014). Active fires from the Suomi NPP Visible Infrared Imaging Radiometer Suite: Product status and first evaluation results. Journal of Geophysical Research: Atmospheres, 119, 2013JD020453, https://doi.org/10.1002/2013JD020453.
- Li, F., Zhang, X., Kondragunta, S., Lu, X., Csiszar, I. and Schmidt, C.C. (2022). Hourly biomass burning emissions product from blended geostationary and polar-orbiting satellites for air quality forecasting applications. Remote Sensing of Environment, 281, p.113237.

- https://doi.org/10.1016/j.rse.2022.113237.
- NOAA/NESDIS/STAR (2023), Regional Advanced Baseline Imager and Visible Infrared Imaging and Radiometer Suite Emissions (RAVE) Algorithm Theoretical Basis Document (ATBD), Version 1.0
- NOAA/NESDIS/STAR (2023), Regional Advanced Baseline Imager and Visible Infrared Imaging and Radiometer Suite Emissions (RAVE) Algorithm Theoretical Basis Document (ATBD), Version 2.0
- Schmidt, C.C., Hoffman, J., & Prins, E.M. (2012). GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document For Fire / Hot Spot Characterization Version 2.5. In (pp. 1-97): NOAA NESDIS STAR
- Schmit, T.J., Griffith, P., Gunshor, M.M., Daniels, J.M., Goodman, S.J., & Lebair, W.J. (2017). A Closer Look at the ABI on the GOES-R Series. Bulletin of the American Meteorological Society, 98, 681-698, https://doi.org/10.1016/10.1175/bams-d-15-00230.1.

4.2. Maintenance History

END OF DOCUMENT

5. Acronyms

Acronym	Definition
ABI	Advanced Baseline Imager
ASSISTT	Algorithm Scientific Software Integration and System Transition Team
CLASS	Comprehensive Large Array-data Stewardship System
DM	Dry Mass
DOC	Department of Commerce
ERT	Earth Resources Technology, Inc.
ESPC	Environmental Satellite Processing Center
EUM	External Users' Manual
FRE	Fire Radiative Energy
FRP	Fire Radiative Power
GOES	Geostationary Operational Environmental Satellite
IMSG	I.M. Systems Group, Inc.
JPSS	Joint Polar Satellite System
NCCF	NESDIS Common Cloud Framework
NCEI	National Centers for Environmental Information
NESDIS	National Environmental Satellite, Data, and Information Service
NetCDF	Network Common Data Form
NOAA	National Oceanic and Atmospheric Administration
NPP	National Polar-orbiting Partnership
OCS	Office of Common Services
OMS	Operations, Maintenance, and Sustainment
OSPO	Office of Satellite and Product Operations
PAL	Product Area Lead
PDA	Product Distribution and Access
PIB	Product Implementation Branch
PPM	Project Portfolio Management
QA	Quality Assurance
R2O	Research to Operations
RAVE	Regional Advanced Baseline Imager and Visible Infrared Imaging Radiometer Suite Emissions
SA	Science Algorithm
SDSU	South Dakota State University
SMM	System Maintenance Manual
STAR	Center for Satellite Applications and Research
V&V	Verification and Validation
VIIRS	Visible Infrared Imaging Radiometer Suite